<u>Tutorial 2 - Solutions</u> <u>Enthalpy and Entropy</u>

Answers to questions 1-8 on page 6 & 7 of Tutorial 2:

1.	Tell whether each of the following is endothermic or exothermic and state which has
	minimum enthalpy, the reactants or the products:

a.
$$PCl_{5(g)} \rightleftharpoons Cl_{2(g)} + PCl_{3(g)} \quad \Delta H = 92.5 \text{ kJ}$$

$$\underline{\qquad} \textbf{endo} \text{ thermic and the } \underline{\qquad} \textbf{reactants} \text{ have } \textit{minimum enthalpy}.$$

b.
$$2NH_{3(g)} + 92.4 \text{ kJ} \iff N_{2(g)} + 3H_{2(g)}$$
 ____endothermic and the ___reactants__ have minimum enthalpy.

c.
$$CO_{(g)} + 3H_{2(g)} \rightleftharpoons CH_{4(g)} + H_2O_{(g)} + 49.3 \text{ kJ}$$

___exothermic and the ___products_ have minimum enthalpy.

d.
$$Cl_{2(g)} \rightleftharpoons Cl_{2(aq)}$$
 $\Delta H = -25 \text{ kJ}$

____exothermic and the __products__ have minimum enthalpy.

- When no other factors are considered, a reaction will move in such a way (left or right) in order to achieve a state of _______ enthalpy.
- 3. Given the equation: $2NH_{3(g)} + 92.4 \text{ kJ} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$ If only the *enthalpy* is considered, the (reactant / products) ______reactants_ will be favoured at equilibrium.
- 4. Given the equation: $Cl_{2(g)} \rightleftharpoons Cl_{2(aq)}$ $\Delta H = -25 \text{ kJ}$ If only the *enthalpy* is considered, the (reactant / products) ______**products**_ will be favoured at equilibrium.
- 5. If the reaction: $CO_{(g)} + 3H_{2(g)} \rightleftharpoons CH_{4(g)} + H_2O_{(g)} + 49.3 \text{ kJ}$ was proceeding to the *right*, the enthalpy would be ______decreasing. Is this a *favourable* change? __yes____.

6. If the reaction: $PCl_{5(g)} \rightleftharpoons Cl_{2(g)} + PCl_{3(g)} \quad \Delta H = 92.5 \text{ kJ}$

was proceeding to the *right*, the enthalpy would be _____increasing. Is this a

favourable change? ___no____.

7. If the reaction: $Cl_{2(g)} \iff Cl_{2(aq)} \qquad \Delta H = -25 \text{ kJ}$

was proceeding to the *right*, the enthalpy would be _____decreasing. Is this a

favourable change? ___yes____.

8. If the reaction: $2NH_{3(g)} + 92.4 \text{ kJ} \iff N_{2(g)} + 3H_{2(g)}$

was proceeding to the *right*, the enthalpy would be _____increasing. Is this a

favourable change? ___no___.

Answer to question 9 a-e on p. 10 of Tutorial 2.

- 9. For each of the following, decide whether the *reactants* or the *products* have *greater entropy*:
 - a) $I_{2(s)} \iff I_{2(aq)}$ The **__product**___ has greater entropy.((aq) > (s))
 - b) $2NH_{3(g)} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$

The ______have greater entropy.

(Reactants have 2 moles of gas, products have 1 + 3 = 4 moles of gas.)

c) $NH_{3(g)} \iff NH_{3(ag)}$

The ______has greater entropy.

(A gas has more disorder than an aqueous solution. The particles are much farther apart in a gas!)

 $\text{d)} \quad \text{CO}_{(g)} \, + \, \text{Cl}_{2(g)} \, \Longrightarrow \quad \text{COCl}_{2(g)}$

The ______have greater entropy.

		(The reactants have 2 moles of gas, while the product has only 1 moles of gas.)					
	e)	$MgCO_{3(s)} + 2HCl_{(aq)} \rightleftharpoons MgCl_{2(aq)} + H_2O_{(l)} + CO_{2(g)}$					
		Thehave greater entropy.					
		(There is a gas in the products and no gases in the reactants. This means the products have greater entropy.)					

Ansv	er to	question 10 on page 15 of Tutorial 2					
10.	whic	each of the following reactions decide which has <i>minimum enthalpy</i> (reactants or products) the has <i>maximum entropy</i> (reactants or products), and if the reactants are mixed, what will pen? (go to completion/ reach a state of equilibrium/not occur at all).					
	a) P	$Cl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}; \Delta H = -92.5 \text{ kJ}$					
		The product have minimum enthalpy.					
		The have maximum entropy.					
		If PCl ₃ and Cl ₂ are put together, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)					
		_reach a state of equilibrium (the enthalpy and entropy oppose each other.)					
	b)	$2NO_{2(g)} \iff N_2O_{4(g)} + energy$					
		The has minimum enthalpy.					
		The have maximum entropy.					
		If NO ₂ was put in a flask, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)					
		_reach a state of equilibrium (the enthalpy and entropy oppose each other.)					
	c)	$P_{4(s)} + 6H_{2(g)} + 37 \text{ kJ} \iff 4PH_{3(g)}$					
		The have minimum enthalpy.					

of equilibrium

		The	reactants	1	have maximum entro	py.
		If P _{? (s)} an	and $6H_{2(g)}$ was put in	a flask, what shoul	d happen?(go to comple	etion/ reach a state
		<u>_n</u>	ot occur at all (both	enthalpy and entro	py favour reactants.)	
	d)	2PbO _(s)	$+ 4NO_{2(g)} + O_{2(g)}$	\rightleftharpoons 2Pb(NC	$(\Delta Y_3)_{2(s)}$; $\Delta H = -597$	7 kJ
		The	product	has minimu	ım enthalpy.	
		The	reactants	s have ma	aximum entropy.	
			ad $6H_{2(g)}$ was put in librium/not occur at all)	a flask, what should	d happen?(go to complet	ion/ reach a
			_reach a state of eq	uilibrium (the ent	thalpy and entropy or	opose each other.)
		Answe	rs to Self Tes	t on Tutorial	2 - pages 16-	<u>-18</u>
1.	Wha	at is meant by	y enthalpy?	_heat content or	chemical potential	energy
2.	Wha	at is meant by	y entropy?		disorder	
3.		n endothern imum enth		_reactants		have
4.		n exothermi imum enthe		products		have
5.			owing in order from <i>le</i> ses c) aqueous solution		atest entropy:	
	s	olids < _	liquids <:	aqueous solutions	<gases< td=""><td>_</td></gases<>	_
6.	The	re is a natura	ıl tendency toward	minimun	me	enthalpy
	and	1	maximum	_ entropy.		
7.	A pı	rocess in whi	ich <i>entropy increase</i>	es and enthalpy dec	creases will	
	(go to	o completion/ re	each a state of equilibrium/	not occur at all)	go to comple	etion
Tuto	rial i	2 - Entha	lpy and Entropy	- Solutions		Page 4

8.	A process in which entropy increases and enthalpy increases will
	(go to completion/ reach a state of equilibrium/not occur at all)reach a state of equilibrium
9.	A process in which entropy decreases and enthalpy decreases will
	(go to completion/ reach a state of equilibrium/not occur at all)reach a state of equilibrium
10.	A process in which entropy decreases and enthalpy increases will
	(go to completion/ reach a state of equilibrium/not occur at all)not occur at all
11.	A process in which both the enthalpy and entropy trends favour reactants will
	(go to completion/ reach a state of equilibrium/not occur at all)not occur at all
12.	A process in which both the enthalpy and entropy trends favour products will
	(go to completion/ reach a state of equilibrium/not occur at all)go to completion
13.	A process in which the enthalpy and entropy trends oppose each other will
	(go to completion/ reach a state of equilibrium/not occur at all)reach a state of equilibrium
14.	In each of the following, state which has the <i>maximum entropy</i> , (reactants or products)
	a) $C_{(s)}$? $O_{2(g)} \rightleftharpoons CO_{2(g)}$ product
	b) $2Al(s) + 6HCl_{(aq)} \rightleftharpoons 3H_{2(g)} + 2AlCl_{3(aq)}$ products
	c) $2SO_{3(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)}$ products
	d) $HCl_{(g)} \rightleftharpoons H^+_{(aq)} + Cl_{(aq)}$ reactant
	e) $KOH_{(s)} \rightleftharpoons K^{+}_{(aq)} + OH^{-}_{(aq)}$ product

15.	For each of the following reactions decide which has <i>minimum enthalpy</i> (reactants or products),
	which has maximum entropy (reactants or products), and if the reactants are mixed, what will
	happen? (go to completion/ reach a state of equilibrium/not occur at all). Assume there is sufficient
	activation energy to initiate any spontaneous reaction.

a) $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$; $\Delta H = +92.5 \text{ kJ}$

The ______ has/have minimum enthalpy.

The ______ has/have maximum entropy.

If PCl₅ is put in a flask what should happen?(go to completion/ reach a state of equilibrium/not occur at all)

_____reach a state of equilibrium _____

b) $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)} + energy$

The ______ has/have minimum enthalpy.

The ______ has/have maximum entropy.

If NO and O₂ were put in a flask, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)

reach a state of equilibrium _____

c) $Na_2CO_{3(s)} + 2HCl_{(aq)} \rightleftharpoons 2NaCl_{(aq)} + CO_{2(g)} + H_2O_{(l)} + 27.7 \text{ kJ}$

The ______ has/have minimum enthalpy.

The _____ has/have maximum entropy.

If $Na_2CO_{3(s)} + 2HCl_{(aq)}$ were put in a flask, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)

____go to completion____

	d) $2Pb(NO_3)_{2(s)} + 597 \text{ kJ} $	
	The has/have minimum enthalpy.	
	The has/have maximum entropy.	
	If Pb(NO ₃) ₂ was put in a flask, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)	
	reach a state of equilibrium	
16.	Reactions which result in a/andecrease in enthalpy and a/an	
	increase in entropy will <i>always</i> be spontaneous .	
17.	Reactions which result in a/anincrease in enthalpy and a/an	
	decrease in entropy will always be non-spontaneous.	
	You have now finished Tutorial 2 Get clarification on anything you don't understand - as soon as possible!	