Calculating Equilibrium Constant

- Example-1:
1.000 mole of H_{2} gas and 1.000 mole of I_{2} vapor are introduced into a 5.00-liter sealed flask. The mixture is heated to a certain temperature and the following reaction occurs until equilibrium is established.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{~g})
$$

At equilibrium, the mixture is found to contain 1.580 mole of HI . (a) What are the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium? (b) Calculate the equilibrium constant K_{c}.

Calculating Equilibrium Constant for reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$

- $\quad \mathrm{H}_{2}(\mathrm{~g}) \quad+\mathrm{I}_{2}(\mathrm{~g}) \quad 2 \mathrm{HI}(\mathrm{g})$
- Initial [], M: $0.200 \quad 0.200 \quad 0.000$
- Change in [], M: -0.158 -0.158 +0.316
- Equilibrium [], M $0.042 \quad 0.042 \quad 0.316$

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(0.316)^{2}}{(0.042)^{2}}=57
$$

Calculating Equilibrium Constant

- Example-2:
0.500 mole of HI is introduced into a 1.00 liter sealed flask and heated to a certain temperature. Under this condition HI decomposes to produce H_{2} and I_{2} until an equilibrium is established. An analysis of the equilibrium mixture shows that 0.105 mole of HI has decomposed. Calculate the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI , and the equilibrium constant K_{c} for the following reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{~g}),
$$

Calculating Equilibrium Constant

- The reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$, proceeds from right to left.
- $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$
- Initial [], M: $0.000 \quad 0.000 \quad 0.500$
- Change in [], M: +0.0525 $+0.0525 \quad-0.105$
- Equilibrium [], M $0.0525 \quad 0.0525 \quad 0.395$

$$
K_{\mathrm{c}}=\frac{(0.395)^{2}}{(0.0525)^{2}}=56.6
$$

THINGSWE STILL NEEDTOTALK ABOUT

Vocabulary

- Homogeneous equilibrium: all the reactants and products are in the same phase
- Heterogeneous equilibrium: when there are two or more phases
- $\mathbf{Q}_{\mathbf{c}}$: reaction quotient, refers to a quotient obtained by applying the equilibrium law to initial concentrations (instead of equilibrium concentrations)

The Reaction Quotient

- The mass action expression or reaction quotient has the symbol Q.
- Q has the same form as Kc
- The major difference between Q and Kc is that the concentrations used in Q are not necessarily equilibrium values.
- Why do we need another "equilibrium constant" that does not use equilibrium concentrations?
- Q will help us predict how the equilibrium will respond to an applied stress.
- To make this prediction we compare Q with K_{c}.

The Reaction Quotient

- The equilibrium constant for the following reaction is 49 at $450^{\circ} \mathrm{C}$. If 0.22 mole of $\mathrm{I}_{2}, 0.22$ mole of H_{2}, and 0.66 mole of HI were put into an evacuated 1.00 -liter container, would the system be at equilibrium? If not, what must occur to establish equilibrium?

The Haber Process: An Application of Equilibrium

- The Haber process is used for the commercial production of ammonia.
- This is an enormous industrial process in the US and many other countries.
- Ammonia is the starting material for fertilizer production.

Fritz Haber 1868-1934 Nobel Prize, 1918

Carl Bosch 1874-1940 Nobel Prize, 1931

$\Delta \mathrm{G}, \Delta \mathrm{G}^{\circ}$, and K_{eq}

- $\Delta \mathrm{G}$ is change in free energy at non-standard conditions.
- $\Delta \mathrm{G}$ is related to $\Delta \mathrm{G}^{\circ}$
- $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$ where $\mathrm{Q}=$ reaction quotient
- When $\mathrm{Q}<\mathrm{K}$ or $\mathrm{Q}>\mathrm{K}$, reaction is spontaneous.
- When $\mathrm{Q}=\mathrm{K}$ reaction is at equilibrium
- When $\Delta \mathrm{G}=0$ reaction is at equilibrium
- Therefore, $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}$

Relationship Between $\Delta \mathrm{G}^{\mathrm{o}}{ }_{\mathrm{rxn}}$ and the Equilibrium Constant

- The relationships among $\Delta \mathrm{G}_{\mathrm{rxn}}^{\mathrm{o}}, \mathrm{K}$, and the spontaneity of a reaction are:

$\Delta \mathrm{G}_{\mathrm{rxn}}^{\mathrm{o}}$	K	Spontaneity at unit concentration
<0	>1	Forward reaction spontaneous
$=0$	$=1$	System at equilibrium
>0	<1	Reverse reaction spontaneous

$\Delta \mathrm{G}, \Delta \mathrm{G}^{\circ}$, and K_{eq}

Product Favored, $\Delta \mathbf{G}^{\circ}$ negative, $K>1$

But systems can reach equilibrium when reactants have NOT converted completely to products.

In this case $\Delta \mathrm{G}_{\mathrm{rxn}}$ is < $\Delta \mathrm{G}_{\mathrm{rxn}}^{\mathrm{o}}$, so state with both reactants and products present is MORE STABLE than complete conversion.

$\Delta \mathbf{G}, \Delta \mathbf{G}^{\circ}$, and \mathbf{K}_{eq}

Reaction is product-favored. $\Delta 6^{\circ}$ is negative, $K>1$

- Product-favored
- $2 \mathrm{NO}_{2}$---> $\mathrm{N}_{2} \mathrm{O}_{4}$
- $\Delta \mathrm{G}_{\mathrm{rxn}}^{\mathrm{o}}=-4.8 \mathrm{~kJ}$
- State with both reactants and products present is more stable than complete conversion.
- $\mathrm{K}>1$, more products than reactants.

Resources from the gas debate

- https://chemistry.stackexchange.com/questions/18567/what-would-be-the-effect-of-the-addition-of-an-inert-gas-to-a-reaction-at-equili\#:~:text=at\ constant\ pressure\%3A,When \%20an\%20inert\%20gas\%20is\%20added\%20to\%20the\%20system\%20in,number\%2 0of $\% 20$ moles $\% 20$ of $\% 20$ gases.
- http://ch302.cm.utexas.edu/chemEQ/equilibrium/selector.php?name=lechat-volume

