Calculating Equilibrium Constant

• Example-1:

1.000 mole of H_2 gas and 1.000 mole of I_2 vapor are introduced into a 5.00-liter sealed flask. The mixture is heated to a certain temperature and the following reaction occurs until equilibrium is established.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

At equilibrium, the mixture is found to contain 1.580 mole of HI. (a) What are the concentrations of H₂, I₂ and HI at equilibrium? (b) Calculate the equilibrium constant K_c .

Calculating Equilibrium Constant for reaction: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

•		$H_2(g)$	+ $I_2(g)$	₹	2 HI(g)
•	Initial [], M:	0.200	0.200		0.000
•	Change in [], M:	-0.158	-0.158		+0.316
•	Equilibrium [], M	0.042	0.042		0.316

$$K_{\rm c} = \frac{[{\rm HI}]^2}{[{\rm H}_2][{\rm I}_2]} = \frac{(0.316)^2}{(0.042)^2} = 57$$

Calculating Equilibrium Constant

• Example-2:

0.500 mole of HI is introduced into a 1.00 liter sealed flask and heated to a certain temperature. Under this condition HI decomposes to produce H₂ and I₂ until an equilibrium is established. An analysis of the equilibrium mixture shows that 0.105 mole of HI has decomposed. Calculate the equilibrium concentrations of H₂, I₂ and HI, and the equilibrium constant K_c for the following reaction:

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g),$

Calculating Equilibrium Constant

• The reaction: H₂(g) + I₂(g) *₹* 2HI(g), proceeds from right to left.

	$H_2(g)$ +	$I_2(g) \rightleftharpoons$	2HI(g)
Initial [], <i>M</i> :	0.000	0.000	0.500
Change in [], M:	+0.0525	+0.0525	-0.105
Equilibrium [], M	0.0525	0.0525	0.395

$$K_{\rm c} = \frac{\left(0.395\right)^2}{\left(0.0525\right)^2} = 56.6$$

THINGS WE STILL NEED TO TALK ABOUT

Vocabulary

- Homogeneous equilibrium: all the reactants and products are in the same phase
- Heterogeneous equilibrium: when there are two or more phases
- Q_c: reaction quotient, refers to a quotient obtained by applying the equilibrium law to initial concentrations (instead of equilibrium concentrations)

The Reaction Quotient

- The mass action expression or reaction quotient has the symbol Q.
 - Q has the same form as Kc
- The <u>major difference</u> between Q and Kc is that the concentrations used in Q are <u>not necessarily equilibrium</u> <u>values.</u>
- Why do we need another "equilibrium constant" that does not use equilibrium concentrations?
- Q will help us predict how the equilibrium will respond to an applied stress.
- To make this prediction we compare Q with K_c .

The Reaction Quotient

• The equilibrium constant for the following reaction is 49 at 450°C. If 0.22 mole of I₂, 0.22 mole of H₂, and 0.66 mole of HI were put into an evacuated 1.00-liter container, would the system be at equilibrium? If not, what must occur to establish equilibrium?

The Haber Process: An Application of Equilibrium

- The Haber process is used for the commercial production of ammonia.
 - This is an enormous industrial process in the US and many other countries.
 - Ammonia is the starting material for fertilizer production.

Fritz Haber 1868-1934 Nobel Prize, 1918

Carl Bosch 1874-1940 Nobel Prize, 1931

 $\Delta G, \Delta G^{\circ}, \text{ and } K_{eq}$

- ΔG is change in free energy at non-standard conditions.
- ΔG is related to ΔG°
- $\Delta G = \Delta G^{\circ} + RT \ln Q$ where Q = reaction quotient
- When Q < K or Q > K, reaction is spontaneous.
- When Q = K reaction is at equilibrium
- When $\Delta G = 0$ reaction is at equilibrium
- Therefore, $\Delta G^{\circ} = -RT \ln K$

Relationship Between ΔG^{o}_{rxn} and the Equilibrium Constant

• The relationships among ΔG^{o}_{rxn} , K, and the spontaneity of a reaction are:

ΔG^{o}_{rxn}	K	Spontaneity at <i>unit</i> concentration		
< 0	> 1	Forward reaction spontaneous		
= 0	= 1	System at equilibrium		
> 0	< 1	Reverse reaction spontaneous		

ΔG , ΔG° , and K_{eq}

Product Favored, $\Delta \mathbf{G}^{\circ}$ **negative,** $\mathbf{K} > 1$

But systems can reach equilibrium when reactants have NOT converted completely to products.

In this case ΔG_{rxn} is $< \Delta G_{rxn}^{\circ}$, so state with both reactants and products present is MORE STABLE than complete conversion.

ΔG , ΔG° , and K_{eq}

- Product-favored
- $2 \text{ NO}_2 \longrightarrow N_2O_4$
- $\Delta G^{o}_{rxn} = -4.8 \text{ kJ}$
- State with both reactants and products present is more stable than complete conversion.
- K > 1, more products than reactants.

Resources from the gas debate

- https://chemistry.stackexchange.com/questions/18567/what-would-be-the-effect-of-the-addition-of-an-inert-gas-to-a-reaction-at-equili#:~:text=at%20constant%20pressure%3A-,When%20an%20inert%20gas%20is%20added%20to%20the%20system%20in,number%20of%20moles%20of%20gases.
- http://ch302.cm.utexas.edu/chemEQ/equilibrium/selector.php?name=lechat-volume